Muscle and bone adaptations after treadmill training in incomplete Spinal Cord Injury: a case study using peripheral Quantitative Computed Tomography.

نویسندگان

  • S Coupaud
  • L P Jack
  • K J Hunt
  • D B Allan
چکیده

We describe the use of peripheral Quantitative Computed Tomography (pQCT) to identify musculoskeletal responses to partial body-weight supported treadmill training (BWSTT) in incomplete spinal cord injury (SCI). Long-term health consequences of SCI include extensive muscle atrophy, severe bone loss and an increased fracture risk in the affected limbs, mostly at both tibial epiphyses and the distal femoral epiphysis. Regular treadmill training may slow or reverse bone loss by recruiting available lower-limb musculature and loading the leg bones dynamically. The potential for detailed analysis of musculoskeletal changes using pQCT is illustrated with a single case study (14.5 years post-SCI), who completed seven months of partial BWSTT. Pre- and post-training lower-limb pQCT scans were taken to quantify changes in trabecular bone, cortical bone, and soft-tissue. Trabecular bone mineral density increased by 5% (right) and 20% (left) in the distal tibia. Changes in proximal tibia and distal femur were negligible. Increases in muscle cross-sectional area were 6% (right) and 12% (left) in the lower leg, 7% (right) and 5% (left) in the thigh. We suggest that treadmill training may lead to positive musculoskeletal adaptations at clinically-relevant sites. Such changes can be measured in detail using pQCT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle and bone adaptations after treadmill training in incomplete Spinal Cord Injury: a case study

We describe the use of peripheral Quantitative Computed Tomography (pQCT) to identify musculoskeletal responses to partial body-weight supported treadmill training (BWSTT) in incomplete spinal cord injury (SCI). Long-term health consequences of SCI include extensive muscle atrophy, severe bone loss and an increased fracture risk in the affected limbs, mostly at both tibial epiphyses and the dis...

متن کامل

CLINICAL NOTES Response to Functional Electrical Stimulation Cycling in Women With Spinal Cord Injuries Using Dual-Energy X-ray Absorptiometry and Peripheral Quantitative Computed Tomography: A Case Series

Background: Loss of bone mass is common after spinal cord injury (SCI). One rehabilitation modality that has shown some promise for maintaining bone health is the functional electrical stimulation (FES) cycle ergometer. Although there has been some research investigating bone health and FES cycle ergometry, few have provided a detailed description of the changes that can occur in bone mass and ...

متن کامل

Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.

The purpose of this report is to examine longitudinal bone mineral density (BMD) changes in individuals with spinal cord injury (SCI) who began unilateral soleus electrical stimulation early after injury. Twelve men with SCI and seven without SCI underwent peripheral quantitative computed tomography assessment of distal tibia BMD. After 4.5 to 6 years of training, average trained limb BMD was 2...

متن کامل

Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.

Maintaining the physiologic integrity of paralyzed limbs may be critical for those with spinal cord injury (SCI) to be viable candidates for a future cure. No long-term intervention has been tested to attempt to prevent the severe musculoskeletal deterioration that occurs after SCI. The purposes of this study were to determine whether a long-term neuromuscular electrical stimulation training pr...

متن کامل

Evaluation of bone mineral density and bone/muscle geometry using pQCT in children after spinal cord injury

Spinal cord injury (SCI) is associated with a reduction in bone mineral density (BMD) and increasedbone fragility. This study aimed to quantify regional changes in bone mineral density and bone/muscle geometry in children following SCI using Peripheral Quantitative Computer Tomography (pQCT). A retrospective cohort study of 19 patients (10 males and 9 females) with SCI was undertaken. The group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of musculoskeletal & neuronal interactions

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2009